Flexible, Memory Efficient Particle System

Bernard LERAT

Robert STEVENS
Particles play a large part in modern video games, generally as elements of environmental or special effects. The basic element of any particle system is, of course, the particle, which is, in turn, basically a 3D point in world space, usually with a sprite or billboard and some other parameters attached to it.

The main requirement when processing particles is to make them evolve efficiently over time. By evolve we mean update their position in the world and also update the other variables required to display them as their designer wanted them to be displayed.

Depending upon what the particle is meant to represent we might be required to modify its colour, its scale, its rotation, the texture image displayed on its sprite and many other parameters. Different types of particle move in different ways and will have different numbers of parameters to modify over time. We need a means of efficiently modifying this diversity of elements in a very generic way. Since we are likely to want to display vast numbers of particles it is also a requirement the code be well optimised and cache efficient.

How we store the particle data is also important. An individual particle might not represent a lot of memory usage, but modern video games can handle hundreds of thousands of particles in some situations. When dealing with such a large number of particles, any economy that can be made per particle will have a considerable impact on the total amount of memory used.

Prerequisites:
This article is primarily aimed at those who have some previous experience writing particle systems. Though prior knowledge of such systems is not required, it is recommended. We suggest reading the following references for supplemental knowledge of particle system design: [Nebula] [Ogre] [OpenSceneGraph] [CrystalSpace] [Irrlicht].
Compression:

An individual particle requires some base variables, which are common for all particle types, and some extra variables that are linked to the specific visual representation for the particle type. When particles are created it is common to add some randomization to certain parameters to “individualize” separate particles. For example, particles are emitted with slightly different velocities or with slightly different shades of color. While it would be difficult to compress the base variables, these extra, randomized variables can be compressed.

For the sake of this discussion we shall propose a simple particle with the following variables (refer to Figure 1).

· Current Life – This is the time elapsed since the particle was created

· Position – This is the position at which the particle was created.

· Direction – This is the initial direction vector assigned to the particle at its creation.

· Total life – This is the total lifespan of the particle. When current life equals total life the particle “dies”.

· Color – The base color of the particle.

· Velocity – The speed at which the particle travels.

[image: image1]Figure 1: Representation of a simple particle’s data set
In this example, Current life, Position and Direction would be common to any type of particle. They are directly implicated in the basic implementation of all particles and will not be discussed in this article, but more details can be found in the following references [Nebula] [Ogre] [OpenSceneGraph] [CrystalSpace] [Irrlicht].
More of interest to us are the variables Total life, Color and Velocity. These are specific to the type of particle and effect how it is viewed and behaves on screen. They are also values that would be randomized when the particle is created, preventing all particles having the same color and all flying off in the same direction.

While it is totally possible to store these variables as part of the particles data structure, it would be better to find a way to represent them more efficiently. Our example particle is not really huge in terms of memory usage as it stands, but it is not especially flexible either. Consider the case where the game designer wants to add some smoke effects and to do this he wants to add a rotation angle and global scale for the particle’s sprite.

As for Total Life, Color and Velocity the designer wants these new values, Angle and Scale, to vary slightly for each instance of particle, so we will have to store a unique value in the particle data structure to be able to update the it consistently. OK, we could just add two extra variables, Angle and Scale, after the Velocity variable. No big deal, it’s still quite small. Then the designer comes back again wanting to add individual scaling on X and Y, then an offset to the UV coordinates and our particle data starts to look ungainly and distressingly large. Worse, when creating instances of our original particle, a little spark effect, it is now carrying around all the extra baggage for scaling and UV scrolling and so on that it just doesn’t need. And we haven’t even started thinking about that other game in parallel development that will be using the same particle engine for a whole load of different effects.

Of course, if we are using and Object Oriented language we could consider deriving new particles from our base type so that each type of particle’s data structure only has the variables it really needs. But by doing so we would complicate the task of particle management by adding extraneous memory allocation issues that we really don’t want to be dealing with. We would also be exposing ourselves to data cache related issues where particle data can no longer be page aligned. It would be much more efficient if we could allocate a single buffer of equal sized, memory-aligned, cache-friendly particle objects that we can use for all our needs.

So let’s go back a bit and consider the basic requirements of these variables that are necessary for the different types of particle. If we did not want to add slight, random variance to these particles, then we could kick the values out to a particle definition array, with one entry per particle type, and just look them up depending on which type of particle we are processing. It is the randomization of these values that is forcing us to store them with the particle.

Wouldn’t it be better if we could find a way of separating the randomized parts of these variables and compressing it somehow? This is the technique we are about to expose.

Let’s look again at Total life, Color and Velocity. When we add random noise to these variables we are actually applying Equation 1.

[image: image2.wmf])

*

(

OFFSET

Random

BASE

Value

+

=

Equation 1

Where Random is a random number in the range –1.0 to 1.0 and BASE and OFFSET are constants that are defined or each particle type.

For example, if we want a particle to have a lifespan varying from 3 to 7 seconds (in other words 5±2 seconds), we would use:

[image: image3.wmf]2

*

5

Random

TotalLife

+

=

This formula would be used for any sort of variable, not just the lifespan of the particle but its velocity, color and whatever else that might be required.

We now see how to extract the random element from these variables, but as it stands we don’t gain anything. In fact we lose out since we still have to keep track of the random value itself and we have to use a calculation to find the actual value. So where is the benefit?

Compression via Pseudo-Random Numbers

To see how we can replace the three variables from our example particle with a single value, consider how we would go about applying random values to our particle when we create it.

Computers are not at all good at creating real random values, so to obtain our “random” values we will be using a basic pseudo-random number generator. Such a generator takes an initial “seed” value and uses some basic mathematical manipulations to transform it into a new, seemingly random, value that we recover and that is in turn used as the seed for the next value and so on.

When creating our particle, we will be making successive calls to such a pseudo-random function as we randomize our various variables. The random values we get back are fed into versions of Equation 1, along with the constants associated with the particle’s variable type and the resulting values are stored.

But let us reconsider the pseudo-random number generator. As the name implies, it is not really random, in fact it is actually just generating a fixed series of values. When we provide a seed value we are just jumping to a specific point in the sequence – the following sequence of values generated will always be the same for any given seed value. See [Lecky-Thompson00] [Isensee01] [Dhupelia05] for more details.
So for any given seed value we will always end up creating the same variables for our particle since the sequence of “random” values we use to initialize the particle is, in fact, constant.

Therefore, to recover this sequence of random values used to create the particle we need only store the original seed value with our particle’s data, which will allow us to recover our randomized states “on-the-fly”, meaning that we no longer need to store them.

Thus our example particle can be described as in Figure 2.

[image: image4]
Figure 2: A compressed particle.

Assuming that our variables are stocked either as 32-bit ints or 32-bit floats, our particle uses a nice round 32 bytes of data.

Clearly we have traded CPU time in order to economize memory, but we have also done more than that. We have rendered our particle data truly generic.

Now should our designer want to add some randomized rotation and scale values we do not need to modify our particle’s data at all. To find our particle’s randomized rate of rotation we’ll just use Equation 1 and the next number from the pseudo-random sequence generated from the particle’s seed value.

Admittedly we will need to recalculate each particle’s values at each iteration, but our code will be much simpler than if we were to have different data structures for different particle types. It is also worth noting that we only need to recreate the particles variables if it is within the visible frustum.

The pseudo code at listing 1 demonstrates the preparations required prior to processing a hypothetical particle type.

LISTING 1:

For each compressed particle p do

 // Initialize the pseudo-random number generator

 // with particle’s seed.

 setSeed(extractSeed(p))

 // random() returns a float in the range -1 to 1.

 // Retrieve the total life of the particle.

 l_lifeCoefficient = random()

 l_life= m_lifeBase + l_lifeCoefficient * m_lifeDelta

 // Retrieve the scale of the particle.

 l_scaleCoefficient = random()

 l_scale= m_scaleBase + l_scaleCoefficient * m_scaleDelta

 // Continue for all the required variables

 …

 // Do the rest of the stuff needed to render

 // this particle.

End

Fast Random Number Generation

When selecting the method used for creating our pseudo-random numbers we can compare the various techniques based on the following factors:

1. Distribution

2. Periodicity

3. Speed of execution

We are not too concerned with distribution as, given a large number of particles, the overall spread should still be satisfactory. Likewise for the periodicity, it would be an eagle-eyed user who could see any sequence repetition in a particle cloud. What concerns us the most is the speed of execution of the generator code.

We therefore suggest the Java code fragment in Listing 2. See [Owens-Parikh] [King01] [Lomont06] for an in depth comprehension.

Listing 2:
private final float nextRandom(float p_seed)
{
 // Create a random integer with p_seed

 // cast as an integer.
 int l_value=214013*Float.floatToIntBits(p_seed)+2531011;

 // Consider l_value as a float and

 // keep only the mantissa (IEEE 754)
 l_value&=0x007fffff;

 // Make the number in the range [2.F, 4.F[(IEEE 754)
 l_value|=0x40000000;

 // Consider the bits of l_value as representing

 // a float then return an adjusted float in the

 // range [-1.F, 1.F[
 return Float.intBitsToFloat(l_value)-3.f;
}

This code can easily be converted to C/C++ and could also be implemented on a vector unit for improved performance, should one be available.

The distribution obtained using a seed of 4231 and the code in Listing 2 can be seen in Figure 3. We have divided the interval of [-1, 1[into 1000 equal parts and run 1 million iterations to obtain an average distribution of 10,000 and a separation of 71.9. This distribution, though far from being ideal, is acceptable for a particle system. Especially when we take into account that this implementation is 10 times faster than JAVA’s random function for floats on an Athlon 64 3.2Ghz (JDK 6) running Windows XP.

[image: image5.emf]9600

9700

9800

9900

10000

10100

10200

Regular intervals in the range [-1,1]

Figure 3: Distribution from pseudo-random number generator in Listing 2.

Conclusion

The real gain using this system is the fact that all particles, no matter what their type, use a standard data structure containing the strictly minimum amount of data. The example particle shown in Figure 2 would require a maximum of 32 bytes of storage, though this could be reduced should any of the values, such as the direction vector, be compressed from floats to fixed-point 16 or 8-bit values. In fact, a real particle application would require more variables than we expose here, but they could easily be squeezed into the space gained by converting the direction vector to a fixed-point format.

All that is required is that a little work be done prior to processing each particle to recover the specific variable values for that individual particle. In exchange we have a system that uses a small amount of code and can handle pretty much anything a designer might require.

The actual CPU cost of this system is hard to evaluate in real world terms, as all applications are different. Suffice to say that an application employing hundreds of thousands of particles could gain back the time lost in recreating each particle’s variables, a job done almost entirely on chip, via the reduction in memory accesses and potential cache misses incurred by larger or irregular data structures.

Acknowledgments

We wish to thank Thierry Phenix and Sylvain Thibaut for their advices after the reading of the first draft.

References

[Nebula] http://www.radonlabs.de

[Ogre] http://www.ogre3d.org
[CrystalSpace] http://www.crystalspace3d.org

[Irrlicht] http://irrlicht.sourceforge.net
[OpenSceneGraph] http://www.openscenegraph.org

[Lecky-Thompson00] Lecky-Thompson, Guy W. « Predictable Random Numbers. » Game Programming Gems 1. Charles River Media, 2000.

[Isensee01] Isensee, Pete. « Genuine Random Number Generation. » Game Programming Gems 2. Charles River Media, 2001.

[Dhupelia05] Dhupelia, Shekhar. « Safe Random Number Systems. » Game Programming Gems 5. Charles River Media, 2005.

[King01] King, Yossarian 2001. « Floating-Points Tricks: Improving Performance with IEEE Floating Point. » Game Programming Gems 2. Charles River Media, 2001.

[Lomont06] Lomont, Chris 2006. « Floating-Points Tricks. » Game Programming Gems 6. Charles River Media, 2006.

[Owens-Parikh] Owens, Kipp and Parikh, Rajiv. « Fast Random Number Generator on the Intel® Pentium® 4 Processor. ».
…

Velocity

Color

Total life

Direction

Position

Current life

Current life

Position

Direction

Seed

_1239819719

_1240046235.unknown

_1239811426.unknown

